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a b s t r a c t

A method of determining the form of the anode-blank boundary for a specified form of the cathode tool in
plane problems of the theory of the dimensional electrochemical machining of metals is proposed. Within
the assumptions made, the anode-blank boundary is divided into a working zone, in which solution of
the metal occurs, and a region next to it in which the machining ceases. The initial problem is reduced
to a problem of plane-parallel potential flow of an ideal liquid with non-linear conditions on its surface.
The point which separates these two regions of the anode boundary corresponds to the point where the
jet separates from the solid boundary. The Brillouin-Villat smooth separation condition is specified when
compiling the closed system of equations at the point where the jet separates.

© 2009 Elsevier Ltd. All rights reserved.

The dimensional electrochemical machining of metals is based on the principle of the local solution of the anode – the blank being
machined – in a flowing electrolyte. An electrode with a specified geometrical shape of the surface acts as the cathode – the machining
tool. A detailed description of the process and of the technology of dimensional electrochemical machining can be found in Refs 1–4.

To obtain high accuracy in copying the shape and size of the cathode on the blank being machined with a specified margin on the
machining it is necessary to localize the electrochemical solution of the metal in the zone to be machined. Outside the limits of this zone
the solution of the metal must be slowed down sharply until it completely ceases. On the basis of an analysis of the electroprocesses for
different electrolytes it has been shown4 that localization of the solution of the metal depends considerably on the composition of the
electrolyte, the properties of the metal and the conditions under which the machining is carried out. For small values of the current density
a value of the current yield � for reactions of the anode solution of the metal in sodium nitrate and chlorate solutions are practically zero.
As a result of anode activation of the metal4 due to the action of anions of the salts, at a certain critical current density, � begins to increase
as the current density increases. Then the main solution of the metal is concentrated on those parts of the blank being machined where
the interelectrode spacing is least, while the rate of solution is a maximum.

When the necessary conditions are satisfied, after prolonged machining, the surface takes a definite shape, that is constant in time,
which is said to be stable or stationary.4 In the stable mode, the shape of the surface being machined in a mobile system of coordinates,
connected with the cathode, does not change, i.e., the anode surface is shifted together with the cathode at a constant rate.

The problems involved in establishing the relation between the shapes of the cathode-tool and the blank obtained in electrochemical
machining are called electrochemical machining problems. Formulations of the problems in the model of the ideal process and methods
for solving them are well known.4 In the case of a two-dimensional electric field, if the value of the current yield � is a constant quantity,
the hodograph of the electric field strength at the anode is part of a circumference. This is the basis of the hodograph method.5 The two-
dimensional problem of determining the stationary boundaries of the anode, taking into account the dependence of � on the current
density, was solved in Ref. 6 using the boundary element method.

Below, using a model of the ideal process,4 we find a numerical-analytical solution of the plane problem of the theory of electrochemical
machining, involving the determination of the stable form of the surface of the blank when it is treated with a trihedral cathode of
symmetrical shape, taking into account the localizing properties of sodium nitrate electrolyte. Unlike the problems considered previously,4–6

when formulating and solving this problem we take into account the transition from the zone of intensive solution of the metal into the
region where the anode current is very small and no solution of the metal occurs.
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1. The model of the process

The electrochemical machining process is described, in the general case, by the system of equations of motion of a viscous multiphase
electrically conducting liquid, Maxwell’s equations, the energy equation, the convective diffusion equation and the equation of state of a
gas and also the dependence of the thermal parameters on the temperature, pressure and state of the medium. The aim of mathematical
modelling of the process is to determine the shape of the surface of one of the electrodes for a specified shape of the other. We will use as a
first approximation a model of the ideal process; the basic assumptions and a detailed justification of them were given previously in Ref. 4.

According to the model of the ideal process the electric field with a potential u in the interelectrode space can be described by Laplace’s
equation

(1.1)

The potential ua = U − Ea on the anode surface is determined by the difference between the specified fixed value of the voltage U between
the electrodes and the jump in the electrode potential Ea of the anode. The potential uc = −Ec on the cathode working surface is identical
with the value of the jump in the cathode electrode potential. It is assumed in the model of the ideal process that Ea and Ec are constant
potential jumps, averaged over the surface of the electrodes.4

Henceforth we will consider the plane problem. We introduce a system of Cartesian coordinates x1 and y1, connected with the cathode.
We will assume that the cathode moves in the direction of the ordinate axis.

Starting from Eq. (1.1), we can assume that the function u(x1, y1) is the imaginary part of the analytic function f (z1) = v(x1, y1) + iu(x1, y1)
of the complex variable z1 = x1 + iy1. The function f(z1) is the complex potential of the electrostatic field, and its real part v(x1, y1) is a function
of the current. The level lines u(x1, y1) = const are equipotential field lines, while the lines v(x1, y1) = const are lines of force. The field-strength
vector E(x1, y1) = −grad u(x1, y1) is expressed in terms of the complex potential, and consequently, all the quantities characterizing the field
also.7

The current density distribution on the steady anode boundary is given by the equation4

(1.2)

where ia = �∂u/∂na is the anode current density, � is the electrical conductivity of the medium, � is the electrochemical equivalent of the
metal, � is the density of the anode material and � is the angle between the vector Vc of the velocity of feed of the cathode and the vector
na of the outward normal at a given point of the anode boundary. In condition (1.2) it is assumed that the angle � is a function of ia.

Graphs of the current yield against the current density when machining 5KhNM steel in solutions of sodium nitrate and chlorate of
different concentrations were presented in Ref. 8. For these electrolytes we can represent the analytical relation �(ia) in the form6

(1.3)

Here a0, a1 and icr are constant quantities. In Fig. 1 we show a graph of �(ia) when machining 5KhNM steel in a solution of sodium nitrate
with a concentration of 15%. The continuous curve represents the graph of the function (1.3) for this special case while the points represent
experimental results.8

Using relations (1.2) and (1.3), we obtain the boundary condition on the steady anode boundary

(1.4)

We will now introduce the characteristic current density i0, the characteristic length H (Ref. 5) and the dimensionless variables

Fig. 1.
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and we will change to the dimensionless complex potential

Using the transformation5

Then the function � satisfies Laplace’s equation in the interelectrode space with the following conditions on the electrode boundaries

(1.5)

and on the unknown anode boundary

(1.6)

In special cases the cathode may have lines of symmetry or parts of the boundaries of the dielectric coatings, which are deposited on
the non-working surfaces of the electrode-tool. The following condition is satisfied on the lines of symmetry and on the boundaries of the
dielectric coatings

(1.7)

According to the hydrodynamic analogy9 a plane potential electric field is modelled by a fictitious plane-parallel potential flow of an
ideal incompressible fluid. The stream function of the fictitious flow corresponds to the electric field potential, while the velocity potential
corresponds to the stream function. The hydrodynamic analogy of the electric field strength E is the velocity V of this flow; it should be noted
that the vectors V and E are mutually orthogonal.7 Then, in the case of the hydrodynamic interpretation the equality ∂�/∂n = V is satisfied
along the streamline � = const, where V = |V|. In this system of coordinates the abscissa axis is orthogonal to the direction of approach of
the cathode. In this case the slope of the vector V to the abscissa axis at a given point of the anode boundary is identical, apart from the
sign, with the angle between the direction of approach of the cathode and the vector of the outward normal at the same point. Then, by
condition (1.3) on the anode boundary the velocity of the fictitious flow varies as follows:

(1.8)

where � is the argument of the velocity vector.
The problem of determining the shape of the anode boundary, in its hydrodynamic interpretation, corresponds to the problem of the flow

of an ideal fluid with free surfaces.10 The hydrodynamic analogy facilitates the formulation of the boundary-value problems and enables
methods of the theory of jets of an ideal fluid10,11 to be applied to problems of the dimensional electrochemical machining of metals.

2. Formulation of the problem and its numerical-analytical solution

A sketch of the cross section of the interelectrode gap is shown in Fig. 2. The cross-section of the cathode is an isosceles triangle with
angle at the base �	. In view of the symmetry of the interlectrode gap we can confine ourselves to considering its left-hand part. The
polygon CDE on it corresponds to the boundary of the cathode. The axes of symmetry BC and EF are electric current lines, orthogonal to
the equipotential field lines.

The electrode-tool of this scheme can be used to cut deep grooves in machine components, channels in blanks and other technological
processes.

According to condition (1.3) the required anode boundary can be divided into two regions. Solution of the metal occurs in region AB. The
normal derivative ∂�/∂n in this part satisfies condition (1.6). In the region modelled by the vertical rectilinear part AF, the anode current

Fig. 2.
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Fig. 3.

yield is practically equal to zero and no solution of the metal occurs. The current density on the part AF changes from a value icr at the
point A to zero at an infinitely distant point F. The position of the point A is unknown in advance and must be obtained when solving the
problem. The vector Vc indicates the direction of motion of the cathode. The abscissa axis is chosen to be orthogonal to the direction of
motion of the cathode.

The hydrodynamic analogue is the problem of the theory of plane steady flows of an ideal incompressible fluid along a certain boundary
AB with the specified velocity variation (1.8). The flow is produced by a system of sources, continuously distributed along the line EF, and
sinks on the line BC.

Starting from a priori notion on the shape of the anode boundary AB, we conclude that in this section the angle � decreases monotonically
from 	/2 to zero, i.e., there are no inflection points on the anode boundary AB. Along the boundary AF the velocity must fall monotonically
from a constant value V = a at the point A to zero at an infinitely distant point F. To ensure these requirements we will use the Brillouin-Villat
smooth separation condition, well known in hydrodynamics.10,11 According to this condition the curvature of the anode boundary AB at
the point A is finite and coincides with the curvature of the wall AF, i.e., equal to zero for this problem.

To solve the problem we will introduce an auxiliary complex variable t = 
 + i�, which varies in the region Dt = {|t| ≤ 1, � ≥ 0} (Fig. 3), and
we will seek a function z(t) which conformally maps a semicircle of unit radius in the flow region corresponding to the points shown in
Figs. 2 and 3.

Instead of the function z(t) we can seek the Zhukovskii function10

(2.1)

where V0 = a + b is the value of the velocity of the fictitious flow at the point B (t = 1). The function �(t) is related to the functions W(t) and
z(t) by the equation

(2.2)

According to conditions (1.5) the complex potential W(t) = �(t) + i�(t) satisfies the following boundary conditions

It follows from condition (1.7) that the function �(t) takes constant values on the symmetry lines EF and BC. We will assume that

The region Dw in which the complex potential varies is a rectangle with sides �0 and 1 (Fig. 4).

Fig. 4.
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Using the method of conformal mappings, we obtain the derivative of the complex potential

(2.3)

The parameter �0, representing the current in the electrochemical cell,3 is given by the formula

We will represent the function �(t) in the form of a sum10

(2.4)

where (t) is a function which is analytical in the region where the variable t changes, while the function �*(t) = r* = i�*, r* = ln(V*/V0)
corresponds to the flow in the specified scheme (Fig. 2) with the condition V* = V0 on the anode boundary AB. It follows from condition
(1.8) and the flow scheme shown in Fig. 2 that, on the boundary of the region Dt, the functions �(t) and �*(t) satisfy the conditions

(2.5)

Using Chaplygin’s method of singular points,10 we obtain

(2.6)

where d and f are the coordinates of the sections of the points D and F in the region Dt.
Taking equality (2.4) and boundary conditions (2.5) into account, we obtain the following non-linear boundary-value problem for the

function (t)

(2.7)

(2.8)

Here

The function (t), which gives a solution of boundary-value problem (2.7), (2.8), can be expanded, by virtue of condition (2.8), in a power
series with real coefficients

(2.9)

The condition for smooth separation at the point A can be represented10,11 in the form of an equality

(2.10)

which, using formulae (2.4), (2.6) and (2.9), can be reduced to the form

(2.11)

All the necessary geometrical characteristics of the flow can be found using the parametric representation (2.2):

(2.12)
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Fig. 5.

where

Integrating expression (2.12) in the sections [−�, −d] and [−d, 0], we obtain the length L of the section DE and the length L1 of the section
CD

(2.13)

For the numerical solution of the problem we specify the geometrical quantities L and �, the coefficients a0 and a1, representing the
properties of the electrolyte, and the characteristic current density i0. The expansion coefficients (2.9) are defined in such a way that
condition (2.7) is satisfied on the required anode boundary. The problem is solved numerically by the collocation method, which is widely
employed in hydrodynamics problems.10 The system of equations for calculating the expansion coefficients (2.9) is solved by Newton’s
method together with Eqs (2.11) and (2.13), intended for determining the parameters d, � and f.

3. The results of numerical calculations

To estimate the accuracy of the numerical results as a function of the number of collocation points N, we carried out test calculations
for the following values of the specified parameters

(the values of a0 and a1 correspond to a solution of sodium nitrate with a concentration of 15%, and a = 0.141 and b = 1.104 (Ref 6)). For
N = 120 the approximate solution for this special case can be found with an accuracy of 10−4; the values of the parameters d, � and f and
the coordinates of the point A are then

In Fig. 5 we show the results of a calculation of the shape of the anode boundary for this special case.
If the smooth separation condition is not used, this leads to a breakdown of the condition for a monotonic change in the velocity along

the free boundary AB and the boundary AF, which does not enable the free boundary, satisfying boundary condition (1.8), to be constructed.

4. Conclusion

Using a two-dimensional mathematical model of the ideal process4 when calculating the specific dependence of the current yield on
the anode current density we have solved the problem of calculating the shape of the steady anode boundary for a specified cathode
configuration. The use of the smooth separation condition10,11 enables one to determine the anode boundary which satisfies boundary
condition (1.8). This uniquely ensures the possible value of the interelectrode gap between the symmetry line and the vertical part of the
surface being machined.
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